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back pressures that would better reproduce the thruster plume struc-
tures expected in flight conditions.
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Introduction

N recent years, significant advances have been made for single
disciplines in both computational fluid dynamics (CFD) using
finite difference approaches' and computational structural dynam-
ics (CSD) using finite element methods (see Chap. I of Ref. 2). For
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aerospace vehicles, structures are dominated by internal discontin-
uous members such as spars, ribs, panels, and bulkheads. The finite
element (FE) method, which is fundamentally based on discretiza-
tion, has proven to be computationally efficient to solve aerospace
structures problems. The external aerodynamics of aerospace ve-
hicles is dominated by field discontinuities such as shock waves
and flow separations. Finite difference (FD) computational meth-
ods have proven to be efficient to solve such problems.

Problems in aeroelasticity associated with nonlinear systems have
been solved using both uncoupled and coupled methods.? Uncou-
pled methods are less expensive but are limited to very small pertur-
bations with moderate nonlinearity. However, aeroelastic problems
of aerospace vehicles are often dominated by large structural defor-
mations and high-flow nonlinearities. Fully coupled procedures are
required to solve such aeroelastic problems accurately.

In computing aeroelasticity with coupled procedures, one needs to
deal with fluid equations in an Eulerian reference system and struc-
tural equations in a Lagrangian system. Also, the structural system
is physically much stiffer than the fluid system. As a result, the nu-
merical matrices associated with structures are orders of magnitude
stiffer than those associated with fluids. Therefore, it is numerically
inefficient or even impossible to solve both systems using a single
system of equations. To solve this problem, Guruswamy and Yang®
presented a numerically accurate and efficient approach for two-
dimensional airfoils by independently modeling fluids using FD-
based transonic small perturbation (TSP) equations and structures
using modal equations and coupling the solutions only at boundary
interfaces between fluids and structures. This approach has been ex-
tended for more complete flow equations on the Euler/Navier-Stokes
equations.* The modal approach significantly reduces the number
of structural unknowns to a great extent when compared to a direct
use of FE equations. However, a detailed FE model is required to
generate modal data particularly in the absence of experimentally
measured data. One can take direct advantage of available FE data
and directly couple them with flow equations. By directly using
FE data, the possible errors caused by modal approximations can
be avoided, and detailed results such as stresses can be computed
directly.

In this work, a procedure to compute aeroelasticity by directly
coupling the Euler equations for fluids and with plate finite ele-
ment equations for structures is presented. The coupled equations
are solved using a time-integration method. The time accuracy is
maintained using moving grids that conform to aeroelastically de-
formed shape computed every time step. The aerodynamic forces
are transferred to structures by using simple lumped load (LL) ap-
proach and also a more accurate virtual surface (VS) approach. The
VS approach developed in this work can preserve the work done
by aerodynamic forces due to structural deformations. The VS ap-
proach is validated by computing the aeroelastic response of a wing
and comparing with experiment. All aeroelastic responses are com-
puted at transonic Mach numbers where strong coupling between
fluids and structures is required.

Fluid-Structural Interfaces

The finite element matrix form of the aeroelastic equations of
motion can be written as

(Mg} + [GHqt + [KNq) = {Z} Q)]

where [M], [G], and [K] are the global mass, damping, and stiff-
ness matrices, respectively. {Z} is the aerodynamic force vector cor-
responding to the nodal displacement vector {g}. The aerodynamic
force vector {Z} is computed by solving Euler flow equations using
ENSAERO. The plate option of the ANS4 shell/plate element is used
to represent the structural properties of the wing configuration.’

The main effort after selecting the FE model of the structure
falls into computing the global force vector {Z} of Eq. (1). {Z} is
computed by solving the Euler equations at given time . First, the
pressures are computed at all surface grid points. The forces corre-
sponding to the nodal DOF are computed using the fluid-structural
interfaces discussed in the following section.

In aeroelastic analysis, it is necessary to represent equivalent aero-
dynamic loads at the structural nodal points and to represent de-
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formed structural configurations at the aerodynamic grid points. In
the present domain decomposition approach, coupling between the
fluid and structural domains is achieved by combining the boundary
data such as aerodynamic pressures and structural deflections at each
time step. An analytical moving grid technique has been success-
fully used to deform the aerodynamic grid according to structural
deflections at the end of every time step. There are several different

-ways to obtain the global force vector {Z} of Eq. (1) depending on

the equations used for the structural dynamic analysis.

A number of numerical procedures have been developed to ex-
change the necessary information between the aerodynamic and
structural domains as listed in Ref. 6. Use of a bilinear interpola-
tion and a VS interface are investigated in this study. The bilinear
interpolation is same as the LL approach. In this approach, the force
acting on each element of the structural mesh is first calculated,
and then the element nodal force vector is obtained by distributing
the total force. The global force vector is obtained by assembling
the nodal force vectors of each element. In addition, the deformed
configuration of the CFD grid at the surface is obtained by linearly
interpolating nodal displacements at finite element nodes. This ap-
proach does not conserve the work done by the aerodynamic forces
and needs fine grids for both fluids and structures to give accurate
results.

An alternate to the LL approach is an improved approach based on
the VS. In this approach, a mapping matrix developed by Appa® is
selected to accurately exchange data between the fluid and structural
interface boundaries. The reason for selecting Appa’s method is that
the mapping matrix is general enough to accommodate changes in
fluid and structural models easily. In addition, this approach con-
serves the work done by aerodynamic forces when obtaining the
global nodal force vector. This method introduces a VS between the
CFD surface grid and the finite element mesh for the wing. This VS
is discretized by a number of finite elements, which are not neces-
sarily the same elements used in the structural surface modeling.

By forcing the deformed VS to pass through the given data points
of the deformed structure, a mapping matrix relating displacements
at structural and aerodynamic grid points is derived as

(71 = 1) (57" (K] + ()T 1)) L) (2)

where [K] is the free-free stiffness of the VS, v, is displacement
mapping from VS to structural grids, v, is displacement mapping
from VS to aerodynamic grids, and § is the penalty parameter.

Then, the displacement vector at the aerodynamic grid {g,} can
be expressed in terms of the displacement vector at the structural
nodal points ¢, as

{g.} =1THgs} 3

From the principle of virtual work, the nodal force vector {Z,} can
be obtained as

{ZY} = [T]T {Za} (4)

where {Z,} is the force vector at the aerodynamic grids. This pro-
cedure is illustrated in Fig. 1.

The aeroelastic equation of motion Eq. (1) is solved by a numeri-
calintegration technique based on the constant-average-acceleration
method. To maintain the time accuracy, grids are regenerated every
time step according to the aeroelastically deformed shape by using
the moving grid capability available in Computer Code ENSAERO.
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Fig. 1 Fluid-structure interfacing using virtual surface approach.

Results

To demonstrate aeroelastic computations, a typical fighter type
wing is selected. For this wing transonic flutter data is available from
wind-tunnel tests.” In this computation, the flowfield is discretized
using a C-H grid topology of size 151 x 30 x 35.

This is the first time a plate FE model has been directly coupled
with the Euler equations. As a result, the validity of the coupling
approach will be verified by comparing the FE resuits with those
from the previously well-validated modal analysis. In this calcula-
tion, the FE computations were made using 36 plate elements, and
the modal computations were made using the first six modes of the
wing. Six elements each were assigned along the chordwise and
spanwise directions, respectively. Figure 2 shows the displacement
responses of the leading edge at the tip obtained by both FE and
modal analyses for M, = 0.854, p = 0.70 psi, and @ = 1.0 deg.
For this simulation, dynamic aeroelastic computations were made
setting a high value for the damping coefficient so that the final re-
sults would approach steady-state conditions. The VS approach was
used to calculate nodal forces for both the FE and modal analysis.
Results in Fig. 2 demonstrate the validity of the coupling of plate
elements with the Euler equations. The FE approach gives displace-
ments about 0.1% higher than the modal approach. Such results are
expected since the modal approach yields a structure that is stiffer
than the actual one, whereas the FE approach represents the actual
structural stiffness.

The accuracy of the results can depend on the type of interfaces
between fluids and structures. In the following calculations, the sim-
ple LL and the more accurate VS interfaces are compared to each
other, and the results are shown in Fig. 3. The wing structure was
modeled using 100 ANS4 elements. An assignment of 10 elements
each was made along the chordwise and spanwise directions, respec-
tively. To discretize the VS, a four-noded, isoparametric element is
used. For a given dynamic pressure of 1.0 psi and initial acceleration
of 1.0 x 10° in./s, the time history of total lift on the wing is pre-
sented in Fig. 3. The total lift obtained by integrating the pressure
coefficients at CFD grid points is also shown in the figure. The total
lift using CFD grid points is more accurate than those from VS and
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Fig.2 Validation of finite element implementation in ENSAERO.
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Fig. 3 Comparison of lumped load and virtual surface irterfacing
methods.
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LL methods. Both VS and LL approaches obtain the total lift by
summing the forces at the FE nodal points, which was transformed
from the pressure coefficients through interfaces. The VS approach
transfers pressure data more accurately than the LL approach. The
LL approach shows that the response around peaks deviates from
the CFD solution. For this case the LL approach shows reasonable
agreement with the VS approach.

The present work has strong potential for general applications
dealing with more complex geometries and complete equations.
Application of this approach for wing-body configurations by using
the Navier—Stokes equations is demonstrated in Ref. 8.
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Introduction

HERE are two kinds of in-plane shear loadings in shear buck-

ling analysis of skew plates. The first kind of shear loading
is that along the two horizontal edges where the traction is a pure
shear stress, whereas along the other two oblique edges, the traction
consists of both shear and direct stresses of such magnitude that
every infinitesimal rectangular element is in a state of pure shear.
Another kind of shear buckling considered for skew plates is where
the shear loads are uniformly applied along the plate edges. Figure
1 shows these two kinds of shear loadings, and we refer to the first
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Fig.1 Two kinds of shear loading conditions on skew plates: a) R shear
loading and b) S shear loading.

kind of shear loading as R shear loading and the second kind as §
shear loading in this Note. The geometry of the plate is also given
in Fig. 1a.

Since 1954, the shear buckling of skew plates has been studied by
anumber of researchers such as Wittrick,! Argyris,” Durvasula,® and
Yoshimura and Iwata.* These studies, however, were all confined to
thin skew plates based on the Kirchhoff plate theory. When the plates
are thick, these thin plate solutions overpredict the shear buckling
load, and the error increases with increasing plate thickness. The
error is, due to the neglect of shear deformation in thin plate theory.

Based on the Reissner-Mindlin>® shear deformation plate the-
ory and applying the pb-2 Rayleigh-Ritz solution procedure,”® this
Note presents critical shear load factors (for R and § shear loadings)
for simply supported skew Mindlin plates of various aspect ratios
alb, skew angles «, and thickness-length ratios 4 /b. Note that the
potential energy functional of skew Mindlin plates was derived in
skew coordinates. The derivation of the formulation and the solu-
tion process have been detailed in Ref. 8. The shear correction factor
k = 5/6 and Poisson’s ratio v = 0.3 are used where required.

Results and Discussion

The in-plane forces on an infinitesimal rectangular element are
given by (see Fig. 1) for R shear loading

Ny =Rand N, =0 (1a)
and for § shear loading
Ny, =Sand N, =2Stanw (1b)

and the shear buckling factors are for R shear loading

_ Rb?
and for § shear loading
N

where D = Eh?/[12(1 — v?)] is the flexural rigidity of the plate.

Skew plates of various aspect ratios a/b, skew angles o, and
thickness to oblique width ratios /b have been considered.

Based on convergence studies, it has been found that 14th degree
polynomials in the pb-2 trial functions are sufficient to ensure con-
verged solutions. Since no shear buckling solutions for thick plates
are available, comparisons can only be made with thin plate solu-
tions. Plates with 2/b = 0.001 may be regarded as thin plates since
the shear deformation effect is almost negligible. Table I shows the
shear buckling solutions of such thin plates with results obtained
by previous researchers. Generally, the present results are in close
agreement with existing solutions except for some cases (for exam-
ple, o = —30 deg). The authors believe that some of the previously
published solutions may not have quite converged. The comparison
studies verify somewhat the validity of the present formulation and
analysis and the accuracy of the results.



